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Abstract

Using supervised machine learning (ML) to train a computer vision model typically requires
human annotators to label objects in images and video. Given a large training dataset, this
can be labor intensive, presenting a significant bottleneck in the model-development process.
LabelFlicks is an open-source desktop application that aims to address this pain point with
three helpful ML-assisted features: (1) a streamlined preprocessing pipeline to convert videos
into a series of frames, (2) pre-labeling of video frames using an object detection model pre-
trained on the COCO dataset that ships with LabelFlicks, (3) an ML-assisted human-in-the-
loop workflow for correcting bounding box labels. For each frame of the video(s) provided by
the user, LabelFlicks produces a text file containing labeled bounding boxes in the COCO
annotation format. These datasets can be analyzed (e.g. for finding biases in data slices) or
used to train or finetune an object detection model of your choice using model training tools
such as PyTorch or TensorFlow.
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1. Introduction

Artificial intelligence (AI) has become a much-hyped research area in the last several years,
driven mainly by the impressive results from machine learning (ML) and deep learning (DL)
methods. Nowadays, people can create digital art using generative adversarial networks,
write reports with the help of large language models, and even ride in self-driving cars
powered by computer vision models.

A lot of labeled data is typically needed to train these highly capable models using supervised
DL methods. Data labeling in some domains can be done automatically – for example, text
data can be scraped from all over the Internet and chopped into phrases to train language
models to predict the next most likely word in a sentence. Labeling images and videos,
however, is a more complex task and requires human labor. The data labeling step necessary
for most advanced DL models that consume complex visual data has become a bottleneck
in the overall DL development process.

LabelFlicks is an open-source desktop application that aims to address this pain point with
three helpful ML-assisted features: (1) a streamlined preprocessing pipeline to convert videos
into a series of frames, (2) pre-labeling of video frames using an object detection model pre-
trained on the COCO dataset that ships with LabelFlicks, and (3) an ML-assisted human-
in-the-loop workflow for correcting bounding box labels. For each frame of the video(s)
provided by the user, LabelFlicks produces a text file containing labeled bounding boxes in
the COCO annotation format. These datasets can be analyzed (e.g. for finding biases in
data slices) or used to train or finetune an object detection model of your choice using model
training tools such as PyTorch or TensorFlow. The “Future Work” section of this report
will discuss how LabelFlicks could be extended to support creating computer vision datasets
without assuming a baseline detection model, as well as iteratively train or test a trained
model using human-in-the-loop workflows.

This report will first provide a brief survey of the computer vision landscape and existing
video labeling tools (Section 2). I will then give an exhaustive overview of the technical
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implementation details of the LabelFlicks application (Sections 3 and 4). The "Future Work"
section will discuss how LabelFlicks could be extended to support creating computer vision
datasets without assuming a baseline detection model, as well as how LabelFlicks could
support iteratively train or test a trained model using human-in-the-loop workflows (Section
5).
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2. Existing Solutions

Computer vision is a field of AI that focuses on creating models that can process visual
data, such as images and videos. Object detection is one of the core tasks that computer
vision models are trained to do. It’s used in various applications every day–for example,
helping your phone find people and objects in your photo library or helping self-driving cars
identify road signs and pedestrians. Object detection models are trained to identify regions
of images, represented with bounding boxes, and classify each as a specific type of object,
such as a tree, chair, or table as in the example provided in Figure 2.1.

Figure 2.1: Example image containing labeled bounding boxes for detected trees, tables, and
chairs from the TensorFlow Object Detection Tutorial. [1]

The process for developing a supervised ML model generally follows this pattern: collect the
training data, prepare the data, train the model, evaluate and deploy the model. ML models
learn from examples, and the more high-quality training data they can get, the better they
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will learn. Training object detection models typically requires many thousands of example
images that have been manually annotated with bounding boxes and classification labels,
which is a hugely time-consuming and expensive process [2].

The AI community has recognized that data labeling can be a huge bottleneck in the overall
process and many data labeling tools have developed over the last several years to address
this pain point.

Many companies offer advanced video annotation features to automate parts of the video
annotation process, but they are restricted behind paywalls. Companies, such as SuperAn-
notate, V7, Labelbox, Supervisely, CVAT, and Dataloop, offer video annotation tools that
can be used for all video file formats, can annotate videos while playing them at their na-
tive frame rate, can interpolate annotations between two points in time, and can support
real-time collaboration. Some of these platforms even offer ML-assisted labeling workflows
and a way to hire professional labeling teams. These are highly advanced tools but they
are inaccessible to most non-enterprise customers, such as tech hobbyists, researchers, and
students.

Several open-source video annotation platforms exist as alternatives, such as Universal Data
Tool, UltimateLabeling, and Label Studio, and they generally offer similar features as the
paid solutions: there are ways to label online or offline, with or without collaborators, and
for a variety of computer vision tasks. Label Studio even offers a way to attach an “ML
backend” to train a model while labeling, but it requires some coding to set up. None of
these open-source tools offer an ML-assisted human-in-the-loop labeling workflow out of the
box.
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3. Proposed Solution

LabelFlicks aims to address the data labeling issue in computer vision pipelines by providing
an open-source implementation of a video annotation tool with an AI-assisted, human-in-
the-loop labeling workflow with no code setup required.

Human-in-the-loop means that humans are involved in the AI development process, including
the data collection, preprocessing, model training, and evaluation phases [3]. Human-in-the-
loop systems can be thought of as a way to selectively include meaningful, human feedback
into automated systems such that the overall system is more efficient and takes advantage
of the strengths of both human capabilities and computer processors [4], as shown in Figure
3.1. Human-in-the-loop includes concepts such as Interactive Machine Learning (IML), which
is “an interaction paradigm in which a user or user group iteratively builds and refines a
mathematical model to describe a concept through iterative cycles of input and review” [5].

Figure 3.1: General outline of a human-in-the-loop system

LabelFlicks applies an iterative review approach similar to IML, but it applies it to the data
labeling process rather than the model training process. Instead of iteratively correcting
the model’s predictions during the training process in order to improve the final model,
LabelFlicks allows the user to iteratively correct the label predictions made by a small,
assistive ML model in order to make later label predictions more accurate and accelerate
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the labeling process. The end goal is still the same for both systems: to reduce the effort
required by the human user as the system is iteratively trained to better understand the
target concepts. Desmond et al. from IBM Research conducted user studies to investigate
the impact of AI-assisted data labeling and found that “the accuracy of human labeling
can be improved with relatively weak AI support” [6]. LabelFlicks aims to improve labeling
accuracy through the use of a relatively weak AI-supported interface as well, but for visual
data rather than text data as was used in the study.

The Implementation section will dive into the technical details regarding how the LabelFlicks
proof of concept (PoC) was constructed. The Future Work section will describe how La-
belFlicks could expand its capabilities to implement model-training IML in the future, along
with other technical improvements that would make it suitable for other use cases as well.
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4. Implementation

The bird’s eye view of the LabelFlicks architecture is provided in Figure 4.1. The LabelFlicks
code is contained in two GitHub repositories – LabelFlicks-backend and LabelFlicks-desktop
– representing the backend and frontend components of the whole system. The backend
implements a REST API that is consumed by the frontend, meaning the API serves as a
common “contract” for expected inputs and outputs. The REST API abstraction of the
backend allows these two major components to be decoupled so that sub-components, such
as the JavaScript framework or database, can be modified or replaced without affecting the
other major component. Both frontend and backend components will be described in detail
in the following subsections.

Figure 4.1: LabelFlicks Dependency Diagram outlining the major components of the frontend
and backend
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4.1 Desktop Application and User Interface

The frontend component of LabelFlicks is a desktop application built using Electron and
Svelte. Electron is an open-source framework for building cross-platform apps using HTML
and JavaScript, and Svelte was the chosen JavaScript framework for more quickly building
the UI. The following subsections will provide a walkthrough of the interactions available on
each main screen as well as a class diagram of their dependencies.

4.1.1 Home Screen

The LabelFlicks home screen is simple and streamlined, as seen in Figure 4.3, containing only
the name of the application, a list of current projects, and a big green button for creating
a new project. When a user clicks on the button, a modal appears (shown in Figure 4.2),
allowing them to provide a name and create a new project. Future improvements could
enhance the design of this landing page, but for the PoC, the main focus of this page is on
the creation of a new project or selection of an existing project.

The home screen is also the first place where the user sees the application’s navigation bar
along the top of the screen. After the home screen, there are four steps that the user will
follow to produce their object detection dataset and they are labeled accordingly on the
navigation bar: (1) Upload Videos, (2) Preprocess Videos, (3) Label Videos, and (4) Export
Labels.

The class diagram for the home screen is provided in Figure 4.4 and it shows the key depen-
dencies required to render the page.
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Figure 4.2: Home screen with modal for creating a new project

Figure 4.3: Home screen with one project listed
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Figure 4.4: Home screen class diagram, which makes use of Svelte components and stores.
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4.1.2 Video Upload Screen

Once the user has selected a project, the remaining links in the navigation bar along the
top of the screen become active and they are directed to the video upload screen (shown in
Figure 4.6). This screen displays the project name, the videos that exist in the project, and
a few buttons. The user can click the “upload a video” button to open a modal (shown in
Figure 4.5) that will allow them to select an MP4 file from their local file system. The “next
step” button will be activated and turns green only after the user has uploaded at least one
video file, allowing the user to progress to the next step in the process.

Figure 4.5: Video upload screen with modal for uploading a new MP4 file

The class diagram for the video upload screen is provided in Figure 4.7 and it shows the key
dependencies required to render the page.
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Figure 4.6: Video upload screen with one uploaded video listed on the screen
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Figure 4.7: Video upload screen class diagram, which makes use of Svelte components and
stores.
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4.1.3 Preprocessing Screen

Once the videos are uploaded, they enter the preprocessing stage and the users are directed
to the preprocessing screen (shown in Figure 4.8), which shows them the preprocessing state
of each of their videos. This screen of the application employs the long-polling strategy to
ping the backend every 20 seconds to check on the status of each video. Once all videos have
reached the “Completed” status, the “Next Step” button will turn green and allow the user
to progress to the next screen.

The class diagram for the preprocessing screen is provided in Figure 4.9 and it shows the
key dependencies required to render the page.

Figure 4.8: Preprocessing screen with the uploaded video showing the completed status
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Figure 4.9: Preprocessing screen class diagram, which makes use of Svelte components and
stores.
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4.1.4 Labeling Screen

The labeling screen (shown in Figure 4.10) consists of two main parts: the frames player and
labeling timelines.

The frames player makes up the left half of the screen and presents the user with a way to
flip through the frames as if they were watching the video but at a slower speed and with
labeled bounding boxes overlaid. The controls for the frames player are located below in the
form of the “back”, “play/pause”, and “next” buttons, as seen in Figure 4.11. There is also
a narrow gray bar and a text caption below the frames player to indicate approximately how
far into the video the user has gone. There is a dropdown menu above the frames player
to allow the user to select a video they had uploaded to their project. Finally, there is a
checklist below the frames player to allow users to hide or show individual bounding boxes.
Users may click on the “delete” label at the bottom left of any bounding box to permanently
remove it from the project if they do not need it.

Figure 4.10: Labeling screen with zero human-reviewed frames indicated by the text state-
ment in the top left, the blue segments in the Labeling Timelines, and the blue overlaid
bounding boxes
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Figure 4.11: Labeling screen frames player with individual frames selected

The labeling timelines make up the right half of the screen. Each timeline corresponds to one
label that belongs to the project. These labels include both entities predicted by LabelFlicks
during preprocessing and labels created by the user. Each timeline consists of segments, each
segment representing a frame. Each frame segment is colored blue if it contains bounding
boxes that the LabelFlicks AI predicted as the timeline’s label. The frame segments turn
green (shown in Figure 4.12) once the user proceeds to the next frame after making any
necessary corrections. The green color indicates that the user either corrected the label
predictions or that the user looked at it and the label required no change. The color scheme
was restricted to these two colors so the user could just focus on the end goal of getting all
of the frames to the human-reviewed state.
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Figure 4.12: Labeling screen with some initial frames marked as human-reviewed

The labeling timeline segments also serve as a way for the user to navigate to different frames
in the video. The user can simply click on any segment and the frames player will update
to show the correct image and overlaid bounding boxes. Figure 4.13 shows how the selected
segment is outlined after clicking ahead to a later frame.

Figure 4.13: Jumped ahead to a later frame using a labeling timeline
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Above each timeline are two buttons: the delete and hidden/shown buttons. As seen in
Figure 4.14, clicking the “shown” button will remove the bounding box overlays associated
with the label from the frames player and change the button to say “hidden” instead. Clicking
the “hidden” button will toggle the visibility of the label again and display the bounding
boxes. Clicking the “delete” button will remove the label from the project, and any boxes
that had that label would be reassigned to the most commonly used label in the project
instead. This is a heuristic that could be improved later, which is mentioned in the Future
Work section.

Figure 4.14: Labeling screen with Labeling Timelines marked as “hidden” to remove the
corresponding overlaid boxes

Above the labeling timelines is the “Add Label” button. Clicking it will bring up the modal
for creating a new label, as shown in Figure 4.15. The new timeline will initially be empty
and contain no blue or green segments, but it can be iteratively populated by AI predictions
and user corrections.

In order to correct the label on a bounding box, the user must click on the name of a box,
which will bring up a dropdown menu of all the labels currently used in the project, as
shown in Figure 4.16. When a new label has been selected, the bounding box will turn
green, as shown in Figure 4.17. At this point, the user may want to submit their edits to the
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Figure 4.15: Labeling screen with modal for creating a label

LabelFlicks AI assistant to tune the predicted labels on unreviewed bounding boxes in later
frames, so they may click the “Predict Unreviewed Labels” button near the bottom right of
the frames player. Figure 4.18 shows the informational tooltip that appears when the user
hovers over this button.

The class diagram for the labeling screen is provided in Figure 4.19 and it shows the key
dependencies required to render the page.
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Figure 4.16: Labeling screen showing dropdown for selecting the correct label

Figure 4.17: Labeling screen with a couple of corrected labels
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Figure 4.18: Labeling screen showing tooltip explaining the “Predict Unreviewed Labels”
button
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Figure 4.19: Labeling screen class diagram, which makes use of Svelte components and
stores.
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4.1.5 Export Labels

The final screen of the LabelFlicks desktop application, as shown in Figure 4.20, allows
users to save their annotations to their local file system. A user can click the “Download
annotations” button to extract all annotation information from the backend’s database and
when that process is complete, the application will provide an alert containing the path to
where the annotations are saved. Currently, LabelFlicks saves the bounding boxes from all
videos in the project in text files that are named using each frame’s database UUID. The
boxes are saved in YOLO format (one of the common annotation formats) where each line
describes one box: “labelUUID center_x center_y width height”. Once the user has copied
the path from the alert, they may click the “Exit Project” button and return to the home
screen.

The class diagram for the export screen is provided in Figure 4.21 and it shows the key
dependencies required to render the page.

Figure 4.20: Export Labels screen with alert stating where to find the annotations
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Figure 4.21: Export labels screen class diagram, which makes use of Svelte components and
stores.
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4.2 PostgreSQL Database

Currently, LabelFlicks stores all videos and frame images on the local file system and all
other data in the PostgreSQL database. The database is run inside of a Docker container
and uses the official postgres Docker image. The database schema and all interactions with
the database from the FastAPI server are defined using SQLAlchemy. Figure 4.22 shows
the database’s Entity-Relationship Diagram (ERD) using crow’s foot notation to denote
cardinality.

Figure 4.22: LabelFlicks database diagram that shows the relationships between the Projects,
Videos, Frames, BoundingBoxes, and Labels tables.
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4.3 FastAPI Server

The LabelFlicks REST API is served by a FastAPI server and was developed using Python.
The class diagram is shown in Figure 4.23. The main monolith server is outlined in yellow,
the storage-related components are outlined in green, and the ML-related components are
outlined in purple.

Figure 4.23: Class diagram of the main backend components

All currently implemented endpoints are featured in Figure 4.24. Each endpoint will be
explained as part of a sequence diagram illustrating the “happy path” for how they are used
in the desktop UI.
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Figure 4.24: Screenshot of all currently implemented FastAPI endpoints
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4.3.1 Home Screen

As shown in Figure 4.25, the desktop UI must call the GET projects endpoint in order
to fetch projects from the database. When the user clicks the “create project” button, the
UI will call the POST projects endpoint and insert the new project information into the
database and return the new project’s information to the UI.

Figure 4.25: Sequence diagram of API calls used for the home screen
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4.3.2 Video Upload Screen

As shown in Figure 4.26, the video upload screen will send a GET request to projects/projectId
and projects/projectId/videos in order to get the necessary information about the
project and its videos. When the user clicks the “upload video” button, the UI will make
a POST request to projects/projectId/videos so the new video can be inserted into the
database. The MP4 video file will be saved to the local file system used by the backend and
the FastAPI server will also start a background task for preprocessing the video.

Figure 4.26: Sequence diagram of API calls used for the video upload screen
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4.3.3 Preprocessing Screen

The preprocessing sequence diagram, shown in Figure 4.27, is a continuation of the video
upload diagram. Once the preprocessing background task starts, FastAPI sets the prepro-
cessing status for that video to “in_progress” in the database. The server then uses OpenCV
to chop up the video into a series of frames, basically taking a snapshot of the video every
second and saving them as images on the local file system. Information about each frame is
inserted into the database, then the Ultralytics YOLOv8 object detection model is applied
to the frame image to generate an initial set of labeled bounding boxes. YOLOv8 is one of
the latest revisions of the “You Only Look Once” (YOLO) real-time object detection model
[7] and it was chosen for its ability to quickly locate and identify objects compared to other
pre-trained deep learning models. Information about each label and bounding box is inserted
into the database. The EfficientNet feature extraction model is applied to the portions of
the frame image that each bounding box corresponds to in order to get an image feature
vector for each box, which is saved as a binary data blob in the database along with each
bounding box. Once this process is complete for all frames and bounding boxes of the video,
FastAPI sets the preprocessing status to “success”.

While the backend server chugs through the preprocessing steps, the desktop UI employs
long polling to periodically check the preprocessing status for each uploaded video. The UI
uses a GET request to projects/projectId/videos and checks the preprocessing status of
each returned video in order to update the preprocessing screen as needed.
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Figure 4.27: Sequence diagram of API calls used for the preprocessing screen
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4.3.4 Labeling Screen

Figure 4.28 shows the API calls used when the UI initializes the labeling screen, either after
navigating to the screen for the first time or after selecting a different video from the project
videos dropdown menu. The UI makes a GET request to projects/projectId/labels to
fetch all project labels from the database and render them as labeling timelines on screen.
The UI makes an additional two API calls–GET projects/projectId/frames and GET
projects/projectId/inferences–to get the video frames for this project and the bounding
boxes for the currently displayed frame. The frame image is displayed in the frames player
and the bounding boxes are SVGs overlaid on top.

Figure 4.28: Sequence diagram of API calls used for populating the labeling screen

The top half of Figure 4.29 shows how after the user clicks on a segment in a labeling timeline,
the UI will update the frame player by finding the next frame image on the local file system
and make a GET request to frames/frameId/inferences to fetch the bounding boxes for
the next frame. This sequence flow differs from the bottom half of Figure 4.29; clicking the
“play”, “next”, or “back” button rather than a timeline segment will make two additional
requests: PUT boundingboxes and PUT frames. These two requests work to mark the pre-
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vious frame and its bounding boxes as “human-reviewed”. This way, the colors of the labeling
timeline segments and bounding box are updated the next time the UI refreshes the screen
using the GET projects/projectId/labels and GET frames/frameId/inferences.

Figure 4.29: Sequence diagram for API calls when navigating between frames

Figure 4.30 shows the sequence of actions after the user clicks on the “Predict Unreviewed
Frames” button. First, any edited bounding boxes from the current frame is sent in a POST
request to boundingboxes?project_id=projectId&video_id=videoId. The current frame
and its bounding boxes are marked as human-reviewed, then the project’s labels and remain-
ing bounding boxes are fetched from the database. FastAPI creates an instance of the Multi-
ClassClassifier, written in PyTorch, and trains it using all of the human-reviewed boxes from
the project. Currently, the MultiClassClassifier is a two-layer neural network with a ReLU
activation and is hardcoded to train for five epochs (this is a hyperparameter that could be
tuned in future improvements assuming the model is not replaced by a better alternative).
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Once training completes, the model predicts the labels for all non-human-reviewed bounding
boxes in the project and returns a simple 200 response to the UI to let it know it can refresh
the screen.

Figure 4.30: Sequence diagram for API calls when iteratively correcting boxes using AI
assistance

The final sequence diagram for the labeling screen, shown in Figure 4.31, illustrates the
sequence flows for deleting a bounding box, creating a new label, and deleting a label.
When a user clicks on the “delete” tag in the bottom left corner of a bounding box,
the UI makes a DELETE request to boundingboxes/boxId, which will delete the box
with the specified ID from the database. When the user clicks the “add label” button,
the UI makes a POST request to projects/projectId/labels so that the new label
can be inserted into the database. Finally, when the user makes a DELETE request
to projects/projectId/labels/labelId, the matching label will be removed from the
database and all bounding boxes that used to have that label will be assigned the most

35



commonly used label in the project. This is a heuristic that could be improved later, as
mentioned in the Future Work section.

Figure 4.31: Sequence diagram for API calls when deleting boxes, creating labels, or deleting
labels
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4.3.5 Export Labels Screen

As shown in Figure 4.32, when the user clicks on the “download annotations” button, a GET
request is made to projects/projectId/annotations. FastAPI queries the database for
all relevant information about the project annotations, such as the project labels, frames,
and bounding boxes. All labels are written out to a text file on the local file system to the
default save location. A text file is created for each frame of the video and each line in the
file describes one box in the frame using the YOLO format: “labelUUID center_x center_y
width height”. FastAPI returns the default save location to the UI to be displayed to the
user.

Figure 4.32: Sequence diagram of API calls used for the export labels screen
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4.4 Scope and Current Limitations

In its current state as a PoC, the main limitation of LabelFlicks is its ability to be useful to
real users. The design choice to use the YOLOv8 model as the pre-labeling object detection
model means that LabelFlicks will only really be able to pre-label objects in videos as long
as they belong to one of the COCO dataset’s 80 classes as that is what the model was pre-
trained on. Of course, the world consists of more than 80 objects, but currently there are no
features available to allow the user to create more bounding boxes or train the small classifier
to detect future instances of new object categories. People hoping to create an entirely new
custom dataset from scratch with no object classes found in the COCO dataset [8] [9] would
likely not be able to do so.

Additional technical limitations of LabelFlicks include the following:

• Video file format: LabelFlicks currently supports only MP4 videos as it is one of the
most commonly used video file formats.

• Editing bounding boxes: LabelFlicks currently assumes that the Ultralytics YOLOv8
object detection model is powerful enough to detect all important objects in each frame
so it does not provide annotation tools for moving, resizing, or creating new bounding
boxes.

• Small classifier limitations: LabelFlicks currently assumes the main purpose of the
human-in-the-loop workflow is for correcting the labels on bounding boxes. As such,
the small classifiers trained as part of this workflow are unable to learn what it means
when a bounding box is deleted and they are unable to predict any new bounding
boxes for objects that YOLOv8 might have missed. Additionally, the small classifiers
are trained only on reviewed boxes for one video at a time, meaning the learning is not
transferred to other videos in the same project.

• Data storage: Local file storage is heavily used in the current implementation of La-
belFlicks as it was the most readily available form of storage during initial development.
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Initial designs considered connecting LabelFlicks to a cloud storage provider, but that
feature was ultimately deemed out of scope for an initial PoC.

All the above limitations are included in the considerations for Future Work.
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5. Future Work

As mentioned in the previous section, LabelFlicks has limited real-world usefulness, but there
are many possible future directions it can take with further development. The following sub-
sections will provide a non-exhaustive overview of these possible use cases and corresponding
future work.

5.1 Custom Dataset Creation

If LabelFlicks were to continue improving as an open-source data labeling tool, the main
PoC limitations must be addressed in addition to building out new features to better support
annotators.

• Customizable pre-labeling detection model: To better support the creation of custom
datasets with non-COCO objects, LabelFlicks could offer users a way to select or
provide their own pre-trained detection model to apply during the preprocessing step.
This model could be pre-trained on a dataset with objects that are more similar to
what the user may be trying to label and the user would not have to manually create
bounding boxes for those objects.

• More capable human-in-the-loop model: The small label classifier currently used in
LabelFlicks could be swapped out for an object detection model–either the same as
the pre-labeling detection model or different–that would be able to predict both new
labels and bounding boxes in future frames. A more capable assistive model in the
human-in-the-loop workflow can help to fill in the gaps left by the pre-trained model
used in the preprocessing step. This model could also go a step beyond the current
LabelFlicks classifier by retraining on all human-reviewed annotations in the selected
project rather than just for the selected video, thereby allowing the assistive model
to be helpful across all videos in the project rather than just one video at a time.
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However, care must be taken to ensure this new model would not overly increase the
latency of each human-in-the-loop iteration.

• Add and resize bounding boxes: LabelFlicks could allow users to add new bounding
boxes and resize existing bounding boxes. The human-in-the-loop model could then
learn from the user’s actions (e.g. deleting a box means it was unnecessary, resizing a
box means it was incorrect, adding a box means it was overlooked) and provide better
predictions in later frames.

• Handle deleted labels more intelligently: When a user deletes a label, LabelFlicks
currently assigns the boxes that used to have that label to the most commonly used
label in the project. This is a heuristic that could instead be replaced with new
predictions from the human-in-the-loop model.

• Support active and/or batch labeling: LabelFlicks could implement a form of active
learning and/or batch labeling [10], allowing the human-in-the-loop model to have
a greater role in asking the user to label specific examples that it finds difficult to
automatically classify. Allowing users to label frames in batches could also help with
maintaining label consistency (i.e. the concepts that users are labeling for should not
drift after they see new frames).

• Take advantage of the temporal aspect of videos: LabelFlicks could better exploit the
temporal property of videos (i.e. adjacent frames are similar to each other) by using
algorithms that track objects across multiple frames. This means that LabelFlicks
could provide labeling features in terms of a series of frames rather than individual
frames. For example, the user could manually correct the boxes in the first frame of
a series of frames, and then the correction would carry over through the rest of the
series.

• Support more file formats: LabelFlicks could support all video file formats, not just
MP4. LabelFlicks could potentially even support image collections for videos that had
already been converted into a series of frames.

• Provide cloud storage options: This feature would serve users who may not have enough
local storage space for all of their labeling projects. This would also serve users who
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may have data that already exists in some form of cloud storage such as Amazon
Web Services, Google Cloud Platform, or Microsoft Azure. If this feature is provided,
LabelFlicks must take care to also fully decouple the frontend from the local file system;
it currently uses the local file system paths to a video’s image files to render the frames
player but ideally it would have no dependency on the file system.

• Eliminate the video to frames conversion step: Several of the enterprise data labeling
tools appear to bypass the need to convert videos into frames and instead support data
labeling while the video plays at its native frame rate. LabelFlicks could potentially
mimic this feature and significantly reduce the preprocessing wait time.

• Support polygon masks: LabelFlicks could provide an annotation tool for drawing
polygon masks rather than only rectangular boxes around each object. This could allow
LabelFlicks to data labeling for other computer vision tasks, such as segmentation.

• Collaborative features: LabelFlicks could offer a collaborative labeling feature as some
enterprise products do, allowing small teams of people to work together and complete
the labeling process sooner. Given the chosen tech stack, it would not be difficult to
convert LabelFlicks into a web application that could be run in different browsers,
allowing teammates to more quickly complete labeling projects. Additionally, imple-
menting some centralized online component could also allow LabelFlicks to calculate
the inter-rater agreement between teammates so that the final labeled dataset can be
more consistent and accurate.

• Conform to standard user experience design heuristics: LabelFlicks could fill in the gaps
outlined by core UI/UX principles, such as Nielsen’s Heuristics [11]. For example, it
could better support user control by providing undo and redo buttons and it could
make the status of the AI assistance more visible to the user.

• Make the UI more inclusive and accessible: LabelFlicks could better serve its users by
correcting inclusivity bugs identified through the GenderMag process [12] and other
such cognitive walkthroughs.

• Conduct user studies to evaluate impact: User studies could be performed using La-
belFlicks to evaluate whether it is effective at increasing labeling accuracy, reducing
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labeling fatigue, and reducing the amount of time and cognitive effort a user spends
preparing their data.

• Design more human-centered interactions: LabelFlicks could be redesigned in some
aspects to incorporate ideas from the new research field called human-centered AI
(HCAI) [13]. Rather than subjecting the human annotator to the demands of the
human-in-the-loop workflow, LabelFlicks could instead provide interactions to allow
the user to drive the labeling process instead.

5.2 Use IML to Train While Labeling

Rather than creating a human-in-the-loop workflow for generating a dataset, LabelFlicks
could instead provide a way for users to train a computer vision model using the interactive
machine learning (IML) paradigm. Some design considerations for pursuing this direction of
development are listed below:

• Allow finetuning or training from scratch: LabelFlicks could offer users a way to fine-
tune a pre-trained model on a more specific dataset or to train a new object detection
model from scratch. This could be presented as an additional screen in the overall
workflow.

• UI adjustments: The LabelFlicks desktop application would have to rearrange and
incorporate some new features to better support an IML workflow. The labeling screen
would likely draw more attention to the model’s performance (e.g. accuracy, recall,
precision) and the export screen would have to provide a way to export or save the
trained model in addition to the annotations if the user wants them.

• Interactive debugging: LabelFlicks could use explanatory debugging [14] or other ex-
plainable AI methods to help users build a mental model of how the ML model reasoned
its way to incorrect predictions in order to make more effective “bug fixes” to the model.
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5.3 Testing Computer Vision Models

LabelFlicks could pivot to being an inspection or testing application for computer vision
models. ML models are powerful and produce impressive results in many applications today,
but they are still generally viewed as “black boxes” since many developers have no idea of
the exact internal workings. LabelFlicks could be made into a human-centered application
for iteratively inspecting a model’s performance on a test set. Some design considerations
for possible future work are listed below:

• Select a model and a dataset to inspect: LabelFlicks could offer a way for users to
select or upload a computer vision model they want to inspect along with some videos
they want to use the model on. The preprocessing step could still be very useful in
decomposing the videos into frames or a series of frames and automatically applying
the model to each unit.

• Change labeling screen to inspection screen: Instead of a labeling screen, the desk-
top application would probably provide an inspection screen instead. This application
could allow users to iteratively mark model predictions as correct or incorrect and con-
tinually update the model’s performance metrics using a human-in-the-loop workflow.
This way, the test data can be entirely fresh, unseen data that the model has not seen
before and that the user does not have to worry about labeling beforehand.

• Inspect performance on partitions of the test dataset: The inspection screen could
provide a way for the user to inspect model performance on subsets of the test data.
Subgroup analysis using visual analytics can help users to identify biases and other
fairness issues in the model [15].

• Closer inspection of confidence scores: DL models are known to be overly confident in
their predictions, which means they can very confidently make an incorrect prediction,
which can result in disastrous outcomes in certain domains (e.g. self-driving vehicles).
The testing application could implement a way to measure miscalibration of computer
vision models (such as the method proposed by Kuppers et al. [16]) and compare that
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with the model’s confidence scores which can be visualized using color or some other
mechanism on the UI.

• Post-inspection reflection: Instead of an export labels screen, the final screen of the
desktop application could report the calculated performance metrics and provide the
user an opportunity to complete a post-inspection reflection in the spirit of After-
Action Review for AI (AAR/AI) [17], which can help the user synthesize and make
sense of the information they learned during their inspection and help them identify
bugs in their model.
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6. Conclusion

This report provided an overview of LabelFlicks, an open-source, proof-of-concept labeling
tool for streamlining videos into fully labeled object detection datasets. The field of ML
has garnered a lot of attention and excitement in recent years, but data labeling presents
a thorn in the side of many developers who want to create their own custom ML models.
LabelFlicks was created to address the data labeling bottleneck, but it has limited usefulness
in its current form. However, with further development, LabelFlicks has the potential to
become a handy open-source tool that offers an ML-assisted workflow for labeling videos,
an application for iteratively training and debugging computer vision models, or a tool for
inspecting and testing a model’s performance on unseen test data.
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